$$
\begin{aligned}
\theta & \left.=\omega_{0} t+\frac{1}{2} \alpha t^{2} \quad \text { (equivalent of the linear } s=u t+\frac{1}{2}\right) a t^{2} \text {) } \\
96 & =5 \times 24+\frac{1}{2} \alpha \times 25 \\
\alpha & ={ }^{-} \operatorname{rad} \\
& \text { so the angular decelleration is } \mathbf{1 . 9 2} \mathbf{r a d ~ s}^{-2} \quad \text { (show) }
\end{aligned}
$$

$$
\begin{array}{ll}
\omega_{1}^{2}=\omega_{0}^{2}+2 \alpha \theta & \left(" v^{2}=u^{2}+2 a s "\right) \\
0=24^{2}+2 \times^{-} 1 \cdot 92 \times \theta & \\
\boldsymbol{\theta}=\mathbf{1 5 0} \mathbf{~ r a d} &
\end{array}
$$

$$
\text { mass of 'elemental disc' }=\rho \cdot \pi y^{2} \cdot \delta x=5400 \pi x^{4} \delta x
$$

MoI of 'elemental disc' $=\frac{1}{2} m r^{2}=2700 \pi x^{8} \delta x$
$I=\int_{0}^{1}\left(2700 \pi x^{8}\right) \mathrm{d} x=300 \pi=\mathbf{9 4 2} \mathbf{k g ~ m} \mathbf{m}^{2}$

3

$$
\begin{aligned}
& I_{A \mathrm{~B}}=\frac{4}{3} m l^{2}=\frac{4}{3} \times 0 \cdot 6 \times 0 \cdot 15^{2}=0 \cdot 018 \\
& I_{A D}=\frac{4}{3} m l^{2}=\frac{4}{3} \times 0 \cdot 6 \times 0 \cdot 20^{2}=0 \cdot 032
\end{aligned}
$$

perpendicular axes rule

$$
I_{A}=0 \cdot 018+0 \cdot 032=\mathbf{0} \cdot \mathbf{0 5} \mathbf{k g ~ m}^{2}
$$

$$
A G=0 \cdot 25 \quad \text { (Pythagoras) }
$$

when $A G$ makes angle θ with the vertical ...

$$
\begin{aligned}
I \ddot{\theta} & ={ }^{-} m g(0 \cdot 25 \sin \theta) \\
\ddot{\theta} & ={ }^{-} 29 \cdot 4 \sin \theta
\end{aligned}
$$

and so for small θ...

$$
\ddot{\theta} \approx-29 \cdot 4 \theta
$$

so the motion is approximately SHM with

$$
T=\frac{2 \pi}{\sqrt{29 \cdot 4}}=1 \cdot 15879 \ldots=\mathbf{1} \cdot \mathbf{1 6} \mathrm{s} \quad(3 \text { s.f. })
$$

4

parallel axes rule ...

$$
I_{A}=I_{C}+m\left(\frac{1}{3} a\right)^{2}=\frac{1}{2} m a^{2}+\frac{1}{9} m a^{2}=\frac{11}{18} \boldsymbol{m} \boldsymbol{a}^{2}
$$

on release ...

$$
\begin{aligned}
\mathrm{M}(A) \quad C & =I \ddot{\theta} \\
m g\left(\frac{1}{3} a\right) & =\left(\frac{11}{18} m a^{2}\right) \ddot{\theta} \\
\ddot{\theta} & =\frac{6 g}{11 a}
\end{aligned}
$$

When released from rest no 'central' force is needed to maintain circular motion about A so the force on the disc a A is purely vertical (upwards).

$$
\mathrm{N} 2(\downarrow)
$$

$$
\begin{align*}
m g-F & =m(r \ddot{\theta}) \\
F & =m g-m\left(\frac{1}{3} a\right)\left(\frac{6 g}{11 a}\right)=\frac{9}{11} \boldsymbol{m} \boldsymbol{g} \tag{3}
\end{align*}
$$

$$
\begin{aligned}
& m=\rho \int_{0}^{\ln 5} e^{x} \mathrm{~d} x=4 \rho \\
& 4 \rho \bar{x}=\int_{0}^{\ln 5} \rho x e^{x} \mathrm{~d} x=\rho\left[x e^{x}\right]_{0}^{\ln 5}-\rho \int_{0}^{\ln 5} e^{x} \mathrm{~d} x=\rho .5 \ln 5-4 \rho \\
& \quad \bar{x}=\frac{5}{4} \ln 5-4 \quad \text { (show) }
\end{aligned}
$$

using the same 'strips' ...

$$
\begin{array}{r}
4 \rho \bar{y}=\int_{0}^{\ln 5}\left(\frac{1}{2} y\right) \cdot \rho y \mathrm{~d} x=\int_{0}^{\ln 5} \frac{1}{2} \rho e^{2 x} \mathrm{~d} x=\rho\left[\frac{1}{4} e^{2 x}\right]_{0}^{\ln 5}=\frac{1}{4} \rho(25-1)=6 \rho \\
\bar{y}=\mathbf{1} \cdot \mathbf{5}
\end{array}
$$

$$
I=124 \times 6^{2}+\left(\frac{1}{3} \times 75 \times 3 \cdot 6^{2}+75 \times 2 \cdot 4^{2}\right)=4464+756=\mathbf{5 2 2 0} \mathbf{~ k g ~ m}{ }^{2} \quad(\text { show })
$$

energy considerations ...
gain in K.E. $=$ loss in G.P.E. - work done by frictional couple

$$
\begin{aligned}
\frac{1}{2} I \omega^{2} & =m g h-C \theta \\
2610 \omega^{2} & =75 \times 9 \cdot 8 \times 2 \cdot 4-850 \times \frac{\pi}{2} \\
\boldsymbol{\omega} & =\mathbf{1} \cdot \mathbf{7 2} \mathrm{rads} \mathrm{~s}^{-1}
\end{aligned}
$$

7

$$
\begin{aligned}
&{ }_{A} \mathbf{v}_{\mathrm{B}}={ }_{A} \mathbf{v}_{G}-{ }_{B} \mathbf{v}_{G} \\
&\left|{ }_{A} \mathbf{v}_{\mathrm{B}}\right|^{2}=20^{2}+15^{2}-2 \times 20 \times 15 \times \cos 115^{\circ}=878 \cdot 640 \ldots \\
&\left|{ }_{A} \mathbf{v}_{\mathrm{B}}\right|=29 \cdot 6406 \ldots=\mathbf{2 9 . 6} \mathbf{k m ~ h}^{-1} \\
& \frac{\sin \theta}{20}=\frac{\sin 115^{\circ}}{29 \cdot 640 \ldots} \\
& \theta=37 \cdot 7^{\circ}
\end{aligned}
$$

the relative velocity is on bearing $\mathbf{1 6 7}{ }^{\circ}$
now considering the position of A relative to $B \ldots$...
closest distance $=70 \sin 12 \cdot 7^{\circ}=\mathbf{1 5} \cdot \mathbf{4} \mathbf{~ k m}$

$$
t=\frac{70 \cos 12 \cdot 7^{\circ}}{29 \cdot 64}=2 \cdot 30 \mathrm{hrs}
$$

ships closest together at 2:18 am
relative to $\theta=0$ position \ldots

$$
\begin{align*}
& V={ }^{-} m g(a \sin \theta)+\frac{1}{2} \times \frac{\frac{1}{2} m g}{a}(2 a \sin \theta)^{2}=\boldsymbol{m g a}\left(\sin ^{2} \boldsymbol{\theta}-\sin \theta\right) \tag{3}\\
& \frac{\mathrm{d} V}{\mathrm{~d} \theta}=m g a(2 \sin \theta \cos \theta-\cos \theta)=m g a \cos \theta(2 \sin \theta-1)
\end{align*}
$$

$$
\begin{aligned}
& \frac{\mathrm{d}^{2} V}{\mathrm{~d} \theta^{2}}=m g a\left(\sin \theta-2 \sin ^{2} \theta+2 \cos ^{2} \theta\right) \\
& \theta=\frac{\pi}{6} \quad \frac{\mathrm{~d}^{2} V}{\mathrm{~d} \theta^{2}}=\frac{3}{2} m g a>0 \quad \therefore \text { stable } \\
& \theta=\frac{\pi}{2} \quad \frac{\mathrm{~d}^{2} V}{\mathrm{~d} \theta^{2}}={ }^{-} m g a<0 \quad \therefore \text { unstable } \\
& \theta=\frac{5 \pi}{6} \quad \frac{\mathrm{~d}^{2} V}{\mathrm{~d} \theta^{2}}=\frac{3}{2} m g a>0 \quad \therefore \text { stable }
\end{aligned}
$$

